این سلولهای آلوده، که عمده آنها از رده گلبولهای سفید خون هستند، یا خودشان از بین میروند، یا این که سلولهای خودی را به جای بیگانه میگیرند و آنها را هم از بین میبرند. شواهد بیولوژیک گوناگونی هم برای تایید این فرضیه وجود داشت.
اما حالا گروه دیگری از دانشمندان، این فرضیه را که در دنیای پزشکی مقبولیت عام یافته بود، زیر سؤال بردهاند و تعجب خواهید کرد اگر بدانید این گروه، نه از بین پزشکان، که از بین ریاضیدانان بودهاند.
به گزارش بیبیسی، این ریاضیدانان، با کمک پزشکان، توانستهاند یک مدل ریاضی دربیاورند و به نوعی با حساب و کتاب نشان دهند که این سازوکار، توجیهکننده سیر آهسته بیماری، در طی سالها، نیست و اگر این سازوکار پیشنهادی درست میبود، باید بیماری ظرف مدت چند ماه، فرد را از پای درمیآورد.
این حساب و کتابها، تمام فرضیات پیشین و مقبول بین دانشمندان را به چالش کشیده و زیر و رو کرده است.
البته این محققان، از کالج سلطنتی لندن و نیز دانشکده پزشکی آتلانتا، در گزارش خود در نشریه PLoS Medicine، آوردهاند که این پژوهش فقط یک «مدل ریاضی» است و نمیتواند بگوید که واقعاً در بدن بیمار آلوده به ویروس چه اتفاقی میافتد و بنابراین تحقیقات گستردهتری از لحاظ فیزیوپاتولوژی لازم است تا سیر تکثیر و بیماریزایی ویروس را در بدن انسان روشن کند. این مطالعه، تنها به ما میگوید که باید در فرضیات قبلی خود تجدید نظر کنیم.
ریاضیدانان پزشکی میکنند؟
این اولین و تنها باری نیست که تحقیقات ریاضی به مطالعات پزشکی کمک میکند. در واقع باید گفت مرز قراردادی میان علوم، که آنها را به طور مشخص به حوزههای جداگانهای با حدود مشخص تقسیم میکرد، اکنون آنقدرها هم جدی تلقی نمیشود. یک محقق ریاضی، میتواند به پیشرفتهای بیولوژی کمک کند و یک فیزیکدان هم میتواند شیمی را با نگاه دیگری بررسی کند.
نمونههای این پژوهشهای «بینرشتهای» بسیار است. به عنوان مثال میتوان آن را در بررسی ریاضی رخدادهای تصادفی ملاحظه کرد. این بررسی میتواند در هر حوزهای، اعم از پزشکی، فیزیک و حتی زمین شناسی، کاربرد داشته باشد.
مثلاً در پیشبینی اپیدمیهای آنفلوانزا، همان طور که میدانید انواع جهشهای ژنتیکی که در ویروس آنفلوانزای پرندگان روی میدهد، میزان انتشار و کشندگی آن را تعیین میکند. این جهشها به طور تصادفی اتفاق میافتد. میتوان از بررسی روند جهشهای پیشین، پیشبینی کرد که جهش کشنده بعدی کی اتفاق میافتد.
در گروهی از این بررسیها، از مفهومی به نام طول مارکوف استفاده میشود که کار پژوهشگری به همین نام است. این مفهوم، در حوزههای دیگر هم کاربرد دارد. مثلاً در پیشبینی زلزله. با این روش میتوان وقوع زلزله را، دو دقیقه قبل از آن، پیشبینی کرد که زمان بسیار حیاتی و ارزشمندی برای کاهش خسارات ناشی از آن است.
البته در رسیدن به نتایج قابل استفاده، لازم است هم نمایندگانی از آن حوزه (مثل پزشکی یا زمینشناسی) و هم کارشناسان ریاضی حضور داشته باشند و با هم در این باره تعامل داشته باشند.
اما نکته مهم این است که هر دو طرف بتوانند درک درستی از رابطه میان حوزههای مختلف علوم داشته باشند و بتوانند این حد و مرزهای قراردادی را، که در طی سالهای پیشرفت علم و تخصصی شدن گرایشها و به ناچار به وجود آمدهاند، کنار بگذارند تا بتوانند به نتیجه مشخصی برسند.